Brickyard Disposal & Recycling, Inc. Danville, Vermilion County, Illinois

Site Number: 1838040029

EXHIBIT C Extraneous Materials Cover Plan

May 2013

Prepared for: Brickyard Disposal & Recycling, Inc. 601 East Brickyard Road Danville, Illinois

3300 Ginger Creek Drive Springfield, Illinois 62711 Tel: (217) 787-2334; Fax: (217) 787-9495

TABLE OF CONTENTS

1.	INTRODUCTION	.1
2.	BACKGROUND	.1
3.	ADDITIONAL COVER INVESTIGATION	.2
	3.2.1 Grain Size/Hydrometer Analyses	.2
	3.2.2 Atterberg Limits	.3
	3.2.3 Standard Proctor Test	
	3.2.4 Hydraulic Conductivity Tests	.4
	3.3 Field Moisture-Density Testing	
	3.4 Summary	.5
4.	COVER	.6
	4.1 Low Hydraulic Conductivity Layer	
	4.2 Vegetative Layer	.7
	4.3 Documentation	.7
	4.4 Cover Maintenance	

TABLES

Tabla	1	Summory	of	Covor	Investigations
Iable	1 -	Summary	UI.	COver	Investigations

- Table 2 Vertical Hydraulic Conductivity
- Table 3 Field Moisture Density Test Results

FIGURES

- Figure 1 2012 Investigation Pits
- Figure 2 Cover Thickness Map
- Figure 3 Moisture-Density Graph

APPENDICES

Appendix A – Field Logs Appendix B – Laboratory Soils Analyses

1. INTRODUCTION

The Extraneous Materials Cover Plan (Plan) has been devised to respond to Illinois Environmental Protection Agency (Illinois EPA) inquiries during raised discussions of the Adjusted Standard Petition for the extension of the groundwater compliance boundary for Brickyard Disposal and Recycling. This Plan includes the results of an additional investigation conducted to further evaluate the qualities of the existing cover overlying known areas containing extraneous materials. In addition, this Plan includes measures that shall be implemented where necessary to ensure adequate cover exists over areas containing extraneous materials that are referenced in the Adjusted Standard Petition. For purposes of completeness and ease of review, some of the information presented in the Technical Support Document to the Adjusted Standard Petition (Exhibit B) is also presented herein.

2. BACKGROUND

Historical information indicates the railroad ties were placed along the periphery of Unit 1 at some time prior to the RCRA Subtitle D landfill regulations in Illinois. The tie placement was not continuous but occurred in pockets or specific areas. Three field investigations were conducted over the years to better identify the locations of the extraneous materials, which also determined the thickness of cover overlying the materials. The field investigations accounted for 109 probe locations, including 36 cover probe borings (conducted with a drilling unit) and 73 test pits completed with the use of a tracked backhoe. Based on the 1992 cover probe investigation and the 2006 and 2008 trench investigations, the thickness of soils overlying the extraneous materials ranged from 0 to 15 feet, with an average thickness of 5.5 feet. The number of probes/test pits conducted to evaluate the cover occurred on the average of one per 0.17 acres, equivalent to less than a 100-foot grid spacing.

The cover composition ranges from clayey soil to a combination of clay, silt, and stone. In areas directly adjacent to the Unit 1 waste boundary, the cover appears to be consistent with that present on Unit 1 (i.e., vegetated clayey soil). It is expected this cover was placed simultaneously with the capping of areas of Unit 1 and in the same manner (compacted soil with a vegetated cover). With distance from the waste boundary, the percentage of aggregate increases within the soil matrix; the cover composition varies with location.

Visual observation from the trench excavations indicate the cover is highly compacted due to over 25 years of traffic during placement and site operation/development. Tests conducted as part of the October 2012 investigation confirmed those observations. Details of the October 2012 Investigation are discussed in Section 3 below. The cover is well vegetated in most areas except where heavy equipment traffic continues due to soil borrow activities adjacent to Unit 1 and facility maintenance. The cover overlying the extraneous materials is typically sloped to promote drainage such that no ponding water occurs, minimizing the potential of surface water infiltration. Existing cover overlying the extraneous material will not be disturbed except as to conduct maintenance and augment the vegetation.

3. ADDITIONAL COVER INVESTIGATION

Pursuant to comments provided by Illinois EPA personnel based on review of the draft Technical Support Document for the Adjusted Standard Petition, an additional investigation was conducted to further evaluate the qualities of the existing cover overlying known areas containing extraneous materials. The cover investigation included test pits at 24 locations (see Figure 1. The excavations advanced until extraneous materials were encountered at which time the excavation halted. Thickness of the extraneous materials was not evaluated during this investigation.

Soil samples were retained for analyses, including grain size/hydrometer, Atterberg limits, standard Proctor curves, and vertical hydraulic conductivity. Each test pit location included field density/moisture testing utilizing a nuclear density gauge at two- and four-foot depth intervals. The data obtained as a whole identify the characteristics of the cover with a focus on the capability of the cover to minimize surface water infiltration to the extraneous materials, thereby minimizing the potential for influence of the groundwater quality. Details of the investigation and results are discussed in the following sections.

3.1 Cover Thickness of Text Excavations

As stated above, test pits were conducted at 24 locations. Field logs were created for each of the excavations describing the material encountered; the subject logs are provided in Appendix A. The test excavations were located over known areas containing extraneous materials. The cover thickness ranged from 1.5 (Station 1005) to 11.0 feet (Stations 1011 and 1012), with an average thickness for the investigation of 6.9 feet. Of the 24 locations tested, only one contained less than 2.5 feet of cover; all other locations contained at least 3.0 feet of cover. The data obtained from the October 2012 investigation have been combined with the data derived during previous investigations to create a comprehensive cover thickness map (Figure 2). As shown, nearly all areas contain at least 3 feet of cover. Table 1 summarizes the data from the test pit investigations from 1992, 2006, 2008, and 2012.

3.2 Soils Analyses

Three cover samples were analyzed for grain size/hydrometer, Atterberg limits (plasticity plastic index, plastic limit, and liquid limit), and compaction via a standard Proctor test. The samples were deemed representative of the soil types encountered for the cover over the extraneous materials, with minor variability. Each parameter is interrelated with respect to the hydraulic conductivity properties. The results of the test are discussed further below.

3.2.1 Grain Size/Hydrometer Analyses

The grain size analyses determined the percentages of different grain sizes within the soil samples, identifying the distribution of coarser particles (sand and gravel—retained by or exceeding the No. 200 sieve). The hydrometer method was used to identify the distribution of fine particles (silt and clay—passing the No. 200 sieve). The analyses were completed pursuant to ASTM D422. The samples were classified based on particle size and the Atterberg limit values via ASTM D2487. Each soil type was classified as "sandy lean clay (CL)" by the testing laboratory. Typically, samples with higher percentages of smaller particles (clay) exhibit lower hydraulic conductivities. The samples tested consist of greater than 50 percent fine-grained material (silt and clay). As discussed in Section 3.2.4, the hydraulic conductivity values for the cover are indicative of clayey soils (low).

The particle diameters of 0.075 mm (No. 200 sieve) and greater represent sand and gravel. Particle diameters less than 0.075 mm represent silt and clay. The following table lists the grain size distribution for the three referenced samples pursuant to the test method. Details of the grain size distributions are presented in Appendix B.

Sample	≥0.075 (Sand and Gravel)	0. 074-0.001 (Silt and Clay)
1003	36.1%	63.9%
1014	42.7%	57.3%
1015	44.9%	55.1%

Note: Grain sizes are in mm.

3.2.2 Atterberg Limits

Atterberg limits of a soil (clay) are the liquid limit, plastic limit, and plastic index, as defined below:

- 1. The liquid limit is the moisture content, expressed as a percentage by weight of the oven-dry soil, at which the soil will begin to flow when disturbed slightly.
- 2. The plastic limit is the lowest moisture content, expressed as a percentage by weight of the oven-dry soil, at which the soil can be rolled into threads one-eighth of an inch in diameter without breaking into pieces.
- 3. The plastic index is the difference between the liquid limit and the plastic limit. It is the range of moisture content through which a soil is plastic.

The Atterberg limits are empirical values that identify a soil's cohesion with varying moisture contents. This is important when constructing liner systems or other structures where particle cohesion is necessary for geotechnical/structural purposes and/or fluid control structures. The Atterberg limits vary with the amount of clay present, the type of clay mineral, and the nature of the ions adsorbed on the clay surface.

A hydraulic conductivity of a soil typically decreases with an increasing liquid limit and plastic index. A smaller grain size is associated with a larger clay composition, which correlates with a lower hydraulic conductivity. Higher plastic limits also typically correlate with a lower hydraulic conductivity. The Atterberg limit values for the three samples analyzed indicate sufficient clay content to produce a low hydraulic conductivity cover. This correlates with the grain size analyses discussed in Section 3.2.1 above. The Atterberg limits for the three samples are:

Sample	Liquid Limit	Plastic Limit	Plastic Index
1003	28	15	13
1014	30	15	15
1015	29	15	14

There is no regulatory requirement for a range of Atterberg limits when constructing a liner system or final cover system for an Illinois-permitted solid waste disposal facility (35 III. Adm. Code Part 814, Subpart C). The limits are used to aid in the construction of such systems to meet foundation and mass stability, hydraulic conductivity, and contaminant transport requirements. However, for purposes of comparison, the State of Wisconsin regulations (NR

504.06 – Minimum Design and Construction Criteria for Landfill Liners and Leachate Collection Systems) require an average liquid limit of 25 with no values less than 20, and an average plastic limit of 12 with no values less than 10. Based on the above information, the soils overlying the extraneous materials are highly suitable for a low hydraulic conductivity cover.

3.2.3 Standard Proctor Test

The standard Proctor test ties the soil characteristics together with a compaction standard to achieve desirable soil densities (geotechnical) and hydraulic conductivity values. Three standard Proctor tests were conducted on representative cover samples by Tri/Environmental, Inc. pursuant to ASTM D698 – Method A. Each test produces a Proctor curve, which is a graphical method illustrating the relationship between the soil dry unit weight and the moisture content of the soil. A soil type increases in density during compaction up to a certain point; beyond that point the density decreases with further increased moisture. The standard Proctor identifies the optimum moisture content to compact a specific soil type, directly relating to the minimum hydraulic conductivity for that soil.

Based upon the soils encountered during this and previous investigations, brown sandy lean clay (CL) from test pit 1014, brown sandy lean clay/grey shale mixture (CL) from test pit 1015, and weathered shale (CL) was the bulk of the material encountered over the extraneous material. Laboratory data classified the soil samples as sandy lean clay (CL). The relevance of the standard Proctor test with respect to this document is to accurately calculate the percent compaction of the cover as discussed in Section 3.3 (Field Moisture-Density Testing). As discussed in that section, the average percent compaction is above the current recommendation of 95 percent standard Proctor for clay liner systems. The Proctor, results along with the grain size/hydrometer and Atterberg limit values are contained in Appendix B.

3.2.4 Hydraulic Conductivity Tests

Eight Shelby tube samples from the cover overlying the extraneous materials were tested for hydraulic conductivity. The results for all samples ranged from 9.5×10^{-9} cm/sec to 3.1×10^{-6} cm/sec. With the exception of sample 1020, $(3.1 \times 10^{-6} \text{ cm/sec})$, all results were 6.9×10^{-7} cm/sec or less. From the photograph observed in Shelby tube sample 1020, it appears the soil was loose and composed of largely crushed bedrock, which resulted in a higher value. Excluding the 1020 result, the remaining seven Shelby tubes exhibited an average hydraulic conductivity of 2.59×10^{-7} cm/sec. Based upon the results of this investigation, the overlying soils are considered to be near or exceed final cover quality for modern day final cover, particularly after having been in place for greater than 20 years. The list of vertical hydraulic conductivity values is contained in Table 2.

The aforementioned average hydraulic conductivity for the cover is approximately two orders of magnitude lower than what the Illinois EPA Bureau of Land/Permit Section recommends for HELP (Hydrologic Evaluation of Landfill Performance) modeling cover for solid waste units in post-closure care. Permit Section personnel have stated that due to freeze-thaw cycles and settlement issues (at a typical municipal solid waste landfill), the vertical hydraulic conductivity of the clay cap is approximately 1x10⁻⁵ cm/sec within five years after placement. Testing conducted as part of this investigation indicates the cover on the extraneous materials has performed significantly better than typical cover constructed pursuant to 35 Ill. Adm. Code Part 811.314. As stated above, the maximum hydraulic conductivity recorded from the eight Shelby tube samples was $3.1x10^{-6}$ cm/sec, which is still less than the referenced value by the Illinois EPA Permit Section personnel. Therefore, the existing cover overlying the extraneous materials

(where a minimum of two feet are present) is more than sufficient to provide long-term protection as to minimize surface water infiltration to the extraneous materials, thereby minimizing potential influences to the groundwater quality.

Standard Proctor curves, nuclear density tests and hydraulic conductivity test results were plotted together on the same graph to identify the range of values and illustrate the correlation. Figure 3 contains the moisture density and hydraulic conductivity information from this investigation of the cover soils. Detailed results from the hydraulic conductivity tests are provided in Appendix B.

3.3 Field Moisture-Density Testing

The geotechnical properties of the soil, which include hydraulic conductivity and compressibility, are dependent on the moisture and density at which the soil is compacted. Pursuant to requests from Illinois EPA personnel, the cover was tested for in-place moisture and density using a Troxler model 3440 nuclear moisture density gauge. The moisture/density tests were conducted at each test pit at depths of two and four feet except where less than two or four feet of cover was present. No field testing was conducted at locations 1009 and 1011 due to the blocky nature of the shale overlying the ties to a depth of over seven and eleven feet, respectively. The density and moisture readings are listed in Table 3.

As discussed above, the maximum dry density utilized in derivation of the in-place density (nuclear moisture density gauge) was obtained from the Proctor tests. The subject values used to determine the percent compaction were 122.1, 116.5, and 120.0 pounds per cubic foot for the varying soil types. The percent compaction is then determined by dividing the maximum dry density into the dry density given by the nuclear moisture-density gauge. An experienced construction quality assurance field technician from Andrews Engineering determined which maximum dry density value was appropriate for each field moisture density test. As shown in Table 3, the compaction of the cover ranged from 75.8- to 107-percent Standard Proctor. The average compaction was 97.4-percent Standard Proctor. The compaction/density requirement in a typical permitted construction quality assurance plan for the low permeable clay layer (final cover and liner) is 95-percent Standard Proctor. The average density of the cover over the extraneous materials exceeds this value. The high soil density does correlate with the low hydraulic conductivity for the extraneous materials cover.

3.4 Summary

Pursuant to comments provided by Illinois EPA personnel, an additional investigation was conducted to further evaluate the qualities of the cover overlying known areas containing extraneous materials. The cover investigation included test pits at 24 locations. Soil samples were retained for analyses, including grain size, standard proctor curves, and vertical hydraulic conductivity. Each test pit location included field density/moisture testing utilizing a nuclear density gauge. The investigation identified the following:

- 1. The grain size/hydrometer analyses determined the cover soils contained significant fine-grained particles and were classified as sandy lean clay (CL). The soils are conducive for and have created a low hydraulic conductivity cover.
- 2. The Atterberg limits of the samples are consistent with clayey soils conducive for creating a low hydraulic conductivity cover. The samples also meet liner criteria published for other regulatory programs for landfill liner systems.

- 3. Standard Proctor tests were conducted to aid in the evaluation of percent compaction of the existing cover. The field moisture-density test results were calibrated to the Proctor test values and determined the average percent compaction of the cover exceeded the typical permitted construction quality assurance requirement for the low permeable clay layer (final cover) 95-percent Standard Proctor after approximately 25 years in place.
- 4. Eight samples were tested for vertical hydraulic conductivity ranging from 9.5x10⁻⁹ cm/sec to 3.1x10⁻⁶ cm/sec. With the exception of sample 1020 (3.1x10⁻⁶ cm/sec), all results were 6.9x10⁻⁷ cm/sec or less with an average of 2.59x10⁻⁷ cm/sec. Sample 1020 appears to be composed of largely crushed bedrock, which resulted in a higher value. As stated in Section 3.2.4, these values are lower than 1x10⁻⁵ cm/sec, which is the current ideology of the Permit Section for final cover hydraulic conductivity five years after installation.

Based on the information acquired during the October 2012 investigation, the existing cover overlying the extraneous materials has performed beyond expectations and appears to perform better than typical clay cover for 35 III. Adm. Code Part 814, Subpart C facilities. Therefore, no augmentation is necessary for the existing cover except to small areas determined to require additional cover. Placement of any additional cover shall be conducted as discussed in the following sections.

4. COVER

The information presented above indicated existing cover overlying extraneous materials provides more than adequate physical protection of the materials and minimizes vertical migration of surface water to the subject materials. Augmentation of existing cover is not necessary except to small areas identified as having deficient cover thickness. Any additional cover placement shall be conducted pursuant to the following sections.

Areas identified as having less than two feet of protective soil cover over the entirety of the extraneous materials, Brickyard Disposal and Recycling will:

- 1. Place additional material on the areas creating a soil cover thickness of not less than two feet.
- 2. Establish vegetative cover on all applicable areas as necessary to prevent erosion. The vegetative layer will be a minimum of six inches thick in addition to a minimum of two feet of soil cover.
- 3. An Illinois Licensed Professional Engineer will provide a Construction Certification Report to the Illinois EPA documenting that the cover augmentation was conducted pursuant to this Plan.
- 4. Maintain the cover overlying the extraneous materials in a similar manner as the final cover present on Unit 1.

4.1 Low Hydraulic Conductivity Layer

Placement of the low hydraulic conductivity layer will occur on areas with less than two feet of existing cover. Areas determined to have two feet of soil cover or greater will not require additional cover. Any placement of additional cover shall consist of earthen material that under compaction achieves a hydraulic conductivity of approximately 1x10⁻⁶ cm/sec.

Earthen material to be used for the low hydraulic conductivity layer will include Unified Soils Classification System types CH, CL, or ML, and may include other material to a lesser extent. Soils with the same or similar properties that currently overlie the extraneous materials should be used. The low hydraulic conductivity layer is to be placed in lifts not to exceed eight inches loose. This cover should be placed at a moisture content sufficient to enhance compaction as to achieve hydraulic conductivity's of approximately 1x10⁻⁶ cm/sec. This portion of the final cover system will be recompacted with a self-propelled soil compactor or other suitable equipment and each layer will be worked sufficiently to break down oversized clods and ensure uniform density. Roots, cobbles, debris, and other deleterious material will be removed from the earthen material prior to compaction. Consistent with current permitting requirements, a minimum of one laboratory hydraulic conductivity layer. Alternative materials or procedures may be used, provided that the alternative materials or procedures achieve equivalent or superior performance to the soil cover as described herein.

As stated above, the extraneous materials occur typically in pockets and are not continuous. Areas that do not contain extraneous materials will not require cover.

4.2 Vegetative Layer

A minimum six-inch thick vegetative layer will be placed on any new cover and may include finished compost product or other augmentative materials generally allowed for use by Brickyard Disposal and Recycling to promote vegetation. The final grades should be capable of supporting vegetation and minimizes erosion. The slopes will promote runoff from the cover and prevent ponding.

Where applicable, seed will be incorporated into the upper surface vegetative layer using appropriate techniques. The mixture of grasses and legumes selected will be amenable to the soil quality, slopes, and moisture and climatological conditions that exist without the need for continued maintenance. It will also be a diverse mix of native and introduced species that is consistent with the open space land use. Such a mixture could include: Kentucky Bluegrass, Perennial Ryegrass, Crownvetch, and White Clover. Soil augmentation will be conducted as necessary to promote the vegetative growth. Mulch consisting of straw, jute, or wood excelsior, will be used as necessary to hold the seed in place and conserve moisture. Additional seeding may be done in the Spring and Fall to ensure proper establishment of the vegetative growth.

As necessary, erosion control techniques will be implemented to minimize the generation of sediment in the runoff from disturbed areas. These may include, but not be limited to, straw bale dikes, silt fences, and vegetative filters.

4.3 Documentation

As stated above, an Illinois Licensed Professional Engineer will provide a Construction Certification Report to the Illinois EPA documenting that the cover augmentation was conducted pursuant to this Plan.

Copies of documentation of all activities associated with the extraneous materials, including borings, test pits, cover placement, maintenance, etc. shall be maintained on site with the facility operating record.

4.4 Cover Maintenance

Maintenance of the cover overlying extraneous materials will be generally consistent with maintenance of the final cover for Unit 1. Any substantial maintenance activities shall be documented. Such documentation shall be placed with the facility operating record.

TABLES

TABLE 1 BRICKYARD DISPOSAL AND RECYCLING UNIT 1 EXTRANEOUS MATERIAL INVESTIGATION

Year	Test Pit/ Boring Number	Northing (ft)	Easting (ft)	Elevation (ft)	Total Depth of Test Pit/ Boring (ft)	Top of Material (ft)/Cover Thickness	Bottom of Material (ft)	Thickness of Material (ft)	Bottom Pit Elevation	Bottom of Material
1992	n/a	49900	2900	n/a	4	4	n/a	n/a	n/a	n/a
1992	n/a	49889	2900	n/a	16	n/a	n/a	n/a	n/a	n/a
1992 1992	n/a	49800 49811	2900 2879	n/a	<u>1</u> 7	1 7	n/a	n/a	n/a	n/a
1992	n/a n/a	49011	2853	n/a n/a	1.5	1.5	n/a n/a	n/a n/a	n/a n/a	n/a n/a
1992	n/a	49700	2900	n/a	3	3	n/a	n/a	n/a	n/a
1992	n/a	49592	2800	n/a	7	7	n/a	n/a	n/a	n/a
1992	n/a	49600	2900	n/a	15	n/a	n/a	n/a	n/a	n/a
1992	n/a	49456	2898	n/a	12	n/a	n/a	n/a	n/a	n/a
1992	n/a	49472	2892	n/a	12	n/a	n/a	n/a	n/a	n/a
1992	n/a	49520	2971	n/a	9	9	n/a	n/a	n/a	n/a
1992	n/a	49600 49700	3000	n/a	15	n/a	n/a	n/a	n/a	n/a
1992 1992	n/a n/a	49700	3000 3100	n/a n/a	6 8	<u>6</u> 8	n/a n/a	n/a n/a	n/a n/a	n/a n/a
1992	n/a	49700	3184	n/a	9	9	n/a	n/a n/a	n/a	n/a
1992	n/a	49600	3100	n/a	15	n/a	n/a	n/a	n/a	n/a
1992	n/a	49700	3300	n/a	12	n/a	n/a	n/a	n/a	n/a
1992	n/a	49685	3415	n/a	9.5	n/a	n/a	n/a	n/a	n/a
1992	n/a	49700	3475	n/a	11	n/a	n/a	n/a	n/a	n/a
1992	n/a	49700	3600	n/a	25	n/a	n/a	n/a	n/a	n/a
1992	n/a	49700	3700	n/a	1	1	n/a	n/a	n/a	n/a
1992	n/a	49827	3711	n/a	10	n/a	n/a	n/a	n/a	n/a
1992	n/a	49917	3878	n/a	10.0	n/a	n/a	n/a	n/a	n/a
1992	n/a	50050	4005	n/a	10.0	n/a	n/a	n/a	n/a	n/a
1992	n/a	50138	4084	n/a	10.0	n/a	n/a	n/a	n/a	n/a
1992	n/a	50200	4000	n/a	4.0	4.0	n/a	n/a	n/a	n/a
1992	n/a	50300	4100	n/a	4.5	4.5	n/a	n/a	n/a	n/a
1992	n/a	50300	4200	n/a	4.0	4.0	n/a	n/a	n/a	n/a
1992	n/a	50400	4100	n/a	5.0	5.0	n/a	n/a	n/a	n/a
1992	n/a	50400	4200	n/a	7.0	7.0	n/a	n/a	n/a	n/a
1992	n/a	50500	4200	n/a	7.0	7.0	n/a	n/a	n/a	n/a
1992	n/a	50500	4300	n/a	7.5	n/a	n/a	n/a	n/a	n/a
1992	n/a	50600	4600	n/a	15.0	n/a	n/a	n/a	n/a	n/a
1992	n/a	50600	4500	n/a	20.0	n/a	n/a	n/a	n/a	n/a
1992	n/a	50600	4400	n/a	15.0	n/a	n/a	n/a	n/a	n/a
1992	n/a	50600	4300	n/a	5.0	n/a	n/a	n/a	n/a	n/a
2006 2006	1 2A	50059 50219	4005 4155	598.2 580.2	<u>19.3</u> 10.5	<u>n/a</u> 1.5	n/a 10.1	n/a 8.6	578.9 569.7	n/a 570.1
2006	2A 2B	50219	4133	580.2	3.0	2.0	3.0	1.0	577.0	577.0
2006	2D 2C	50155	4217	577.3	18.0	7.0	18.0	11.0	559.3	559.3
2006	20 2D	50135	4384	576.2	16.0	n/a	n/a	n/a	560.2	n/a
2006	3A	50407	4304	576.2	17.0	3.0	17.0	14.0	559.5	559.5
2006	3B	50356	4362	575.1	16.0	5.0	16.0	14.0	559.1	559.1
2006	3D 3C	50350	4302	574.0	19.0		n/a	n/a	555.0	n/a
2006	4A	50681	4563	585.5	13.0	9.0	1//a	3.0	573.5	573.5
2006	4A 4B	50682	4667	579.8	12.0	7.0	12.0	5.0	567.8	567.8
2006	4D 4C	50669	4727	574.3	12.0	7.0	8.0	1.0	556.3	566.3
2006	5	50619	4485	587.5	14.0	13.0	14.0	1.0	573.5	573.5
2006	6	50483	4348	578.6	14.0	11.0	14.0	7.0	560.6	560.6
2008	2	50930.21	4847.26	564.99	16.0	n/a	n/a	n/a	549.0	n/a
2008	3	50794.63	4811.97	566.14	17.0	n/a	n/a	n/a	549.1	n/a
2008	4	49922.46	3977.33	581.22	21.0	4.0	21.0	17.0	560.2	560.2
2008	4A	49892.32	4036.72	578.49	21.0	6.0	21.0	16.0	556.5	556.5
2008	5	49841.86	3862.76	592.41	14.0	n/a	n/a	n/a	578.4	n/a
2008	5A	49811.06	3914.58	580.79	22.0	6.0	22.0	16.0	558.8	558.8
2008	5B	49788.93	3966.82	580.54	24.0	10.0	24.0	14.0	556.5	556.5

TABLE 1 BRICKYARD DISPOSAL AND RECYCLING UNIT 1 EXTRANEOUS MATERIAL INVESTIGATION

Year	Test Pit/ Boring Number	Northing (ft)	Easting (ft)	Elevation (ft)	Total Depth of Test Pit/ Boring (ft)	Top of Material (ft)/Cover Thickness	Bottom of Material (ft)	Thickness of Material (ft)	Bottom Pit Elevation	Bottom of Material
2008	6	49725.86	3773.40	595.68	17.0	n/a	n/a	n/a	578.7	n/a
2008	6A	49672.88	3841.17	583.62	22.0	11.0	22.0	11.0	561.6	561.6
2008	6B	49626.65	3890.72	578.42	21.0	6.0	21.0	15.0	557.4	557.4
2008	7	49677.41	3728.55	593.02	21.0	n/a	n/a	n/a	572.0	n/a
2008	7A	49624.66	3771.00	581.70	15.0	n/a	n/a	n/a	566.7	n/a
2008	8	49669.04	3501.81	600.74	14.0	n/a	n/a	n/a	586.7	n/a
2008	8A	49616.85	3513.29	591.16	13.0	n/a	n/a	n/a	578.2	n/a
2008	9	49661.22	3310.08	581.07	18.0	n/a	n/a	n/a	563.1	n/a
2008	10	49612.38	3166.38	587.19	15.0	6.0	15.0	9.0	572.2	572.2
2008	11	49547.68	3089.57	600.35	11.0	n/a	n/a	n/a	589.4	n/a
2008	12	49506.09	2999.43	614.50	14.0	8.0	12.0	4.0	600.5	602.5
2008	13	49494.75	2900.10	615.27	12.0	n/a	n/a	n/a	603.3	n/a
2008	13A	49452.64	2892.78	615.14	10.0	n/a	n/a	n/a	605.1	n/a
2008	14	49520.42	2821.62	610.83	12.0	2.0	10.0	8.0	598.8	600.8
2008	15	49625.89	2774.86	610.36	17.0	3.0	16.0	13.0	593.4	594.4
2008	16	49692.04	2781.26	612.14	18.0	6.0	16.0	10.0	594.1	596.1
2008 2008	16A 16B	49706.96	2713.45 2657.00	612.96 613.38	21.0 19.0	3.0 2.0	21.0 19.0	18.0 17.0	592.0 594.4	592.0 594.4
2008	16C	49720.25 49733.29	2601.19	614.95	19.0	5.0	19.0	17.0	594.4	594.4
2008	17	49733.29	2806.95	615.54	19.0	4.0	19.0	14.0	595.9	600.5
2008	17A	49791.10	2738.35	614.21	19.0	2.0	12.0	10.0	590.5	602.2
2008	17B	49791.10	2679.77	614.27	12.0	2.0	12.0	10.0	602.3	602.2
2008	18	49887.71	2820.57	626.41	22.0	12.0	20.0	8.0	604.4	606.4
2008	18A	49879.41	2767.64	623.65	18.0	12.0	15.0	3.0	605.6	608.6
2008	19	49968.90	2798.94	644.04	20.0	n/a	n/a	n/a	624.0	n/a
2008	20	49968.62	2637.16	647.26	18.0	n/a	n/a	n/a	629.3	n/a
2008	20A	49902.98	2638.32	631.18	19.0	8.0	16.0	8.0	612.2	615.2
2008	20B	49847.54	2641.56	618.68	13.0	n/a	n/a	n/a	605.7	n/a
2008	20C	49794.76	2633.45	615.01	11.0	n/a	n/a	n/a	604.0	n/a
2008	21	49968.74	2431.71	643.12	17.0	10.0	14.0	4.0	626.1	629.1
2008	21A	49910.03	2423.02	631.02	17.0	15.0	16.0	1.0	614.0	615.0
2008	21B	49858.84	2418.31	622.77	12.0	4.0	10.0	6.0	610.8	612.8
2008	21C	49810.96	2412.29	622.35	21.0	3.0	19.0	16.0	601.3	603.3
2008	22	49968.68	2245.84	633.39	11.0	0.0	6.0	6.0	622.4	627.4
2008	22A	49953.16	2185.93	625.30	16.0	1.0	7.0	6.0	609.3	618.3
2008	22B	49935.14	2129.22	628.72	23.5	4.0	22.0	18.0	605.2	606.7
2008	22C	49921.28	2088.12	626.54	26.0	8.0	26.0	18.0	600.5	600.5
2008	22D	49908.68	2041.86	624.98	25.0	8.0	25.0	17.0	600.0	600.0
2008	22E	49936.94	1985.74	622.54	12.0	4.0	9.0	5.0	610.5	613.5
2008	23	50108.87	2247.25	642.88	11.0	0.0	5.0	5.0	631.9	637.9
2008	23C	50088.58	2077.49	635.69	12.0	n/a	n/a	n/a	623.7	n/a
2008	23D	50065.07	2003.46	632.35	13.0	n/a	n/a	n/a	619.3	n/a
2008	24	50275.50	2247.13	642.54	13.0	2.0	4.0	2.0	629.5	638.5
2008	24A	50277.61	2214.63	639.85	7.5	2.0	3.0	1.0	632.3	636.8
2008	24B	50258.14	2156.71	638.54	14.0	4.0	8.0	4.0	624.5	630.5
2008	24C	50247.49	2093.19	639.14	15.0	3.0	5.0	2.0	624.1	634.1
2008	25	50546.80	2246.33	641.57	12.0	n/a	n/a	n/a	629.6	n/a
2008	26	50689.28	2246.39	645.75	14.0	6.0	8.0	2.0	631.7	637.7
2008	27	50856.19	2246.51	646.99	14.0	10.0	14.0	4.0	633.0	633.0
2008	27A	50836.93	2182.91	630.29	12.0	n/a	n/a	n/a	618.3	n/a
2008	28	50192.43	4406.94	576.11	12.0	n/a	n/a 18.0	n/a	564.1	n/a
2008 2008	28A 29	50171.77 50392.47	4242.80 4381.69	578.33 573.67	18.0 24.0	2.0 4.0	18.0 24.0	16.0 20.0	560.3 549.7	560.3 549.7
0/31/2012	1001	49586.79	2871.78	612.21	3.0	3.0	24.0 N/A	20.0 N/A	609.2	049.7 N/A

TABLE 1 BRICKYARD DISPOSAL AND RECYCLING UNIT 1 EXTRANEOUS MATERIAL INVESTIGATION

Year	Test Pit/ Boring Number	Northing (ft)	Easting (ft)	Elevation (ft)	Total Depth of Test Pit/ Boring (ft)	Top of Material (ft)/Cover Thickness	Bottom of Material (ft)	Thickness of Material (ft)	Bottom Pit Elevation	Bottom of Material
10/31/2012	1002	49586.79	3071.78	604.68	8.0	8.0	N/A	N/A	596.7	N/A
10/31/2012	1003	49686.79	3878.34	580.1	6.0	6.0	N/A	N/A	574.1	N/A
10/31/2012	1004	49786.79	2471.78	619	4.5	4.5	N/A	N/A	614.5	N/A
10/31/2012	1005	49786.79	2671.78	614.6	1.5	1.5	N/A	N/A	613.1	N/A
10/31/2012	1006	49786.79	2871.78	616.5	5.5	5.5	N/A	N/A	611.0	N/A
10/31/2012	1007	49886.79	2371.78	623.5	3.5	3.5	N/A	N/A	620.0	N/A
10/31/2012	1008	49886.79	2071.78	623.7	5.5	5.5	N/A	N/A	618.2	N/A
10/31/2012	1009	49886.79	2571.78	626.3	9.0	9.0	N/A	N/A	617.3	N/A
11/1/2012	1010	49886.79	3978.34	581.1	5.0	5.0	N/A	N/A	576.1	N/A
10/31/2012	1011	49886.79	2771.78	624	11.0	11.0	N/A	N/A	613.0	N/A
10/30/2012	1012	49986.79	2171.78	625.2	11.0	11.0	N/A	N/A	614.2	N/A
10/30/2012	1013	50086.79	2071.78	635	10.0	10.0	N/A	N/A	625.0	N/A
10/31/2012	1014	50086.79	4078.34	585.8	8.5	8.5	N/A	N/A	577.3	N/A
10/30/2012	1015	50186.79	2171.78	633.5	8.0	8.0	N/A	N/A	625.5	N/A
10/31/2012	1016	50186.79	4278.34	578.6	8.5	8.5	N/A	N/A	570.1	N/A
11/1/2012	1017	50286.79	4078.34	603.9	7.5	7.5	N/A	N/A	596.4	N/A
11/1/2012	1018	50386.79	4278.34	577.6	3.0	3.0	N/A	N/A	574.6	N/A
11/1/2012	1019	50386.79	4478.34	575.9	6.0	6.0	N/A	N/A	569.9	N/A
11/1/2012	1020	50486.79	4678.34	565.6	8.5	8.5	N/A	N/A	557.1	N/A
11/1/2012	1021	50586.79	4278.34	598.2	10.0	10.0	N/A	N/A	588.2	N/A
11/1/2012	1022	50586.79	4478.3	578	10.0	10.0	N/A	N/A	568.0	N/A
11/1/2012	1023	50586.79	4878.34	556.8	4.0	4.0	N/A	N/A	552.8	N/A
10/30/2012	1024	50786.79	2212.92	637.8	8.0	8.0	N/A	N/A	629.8	N/A

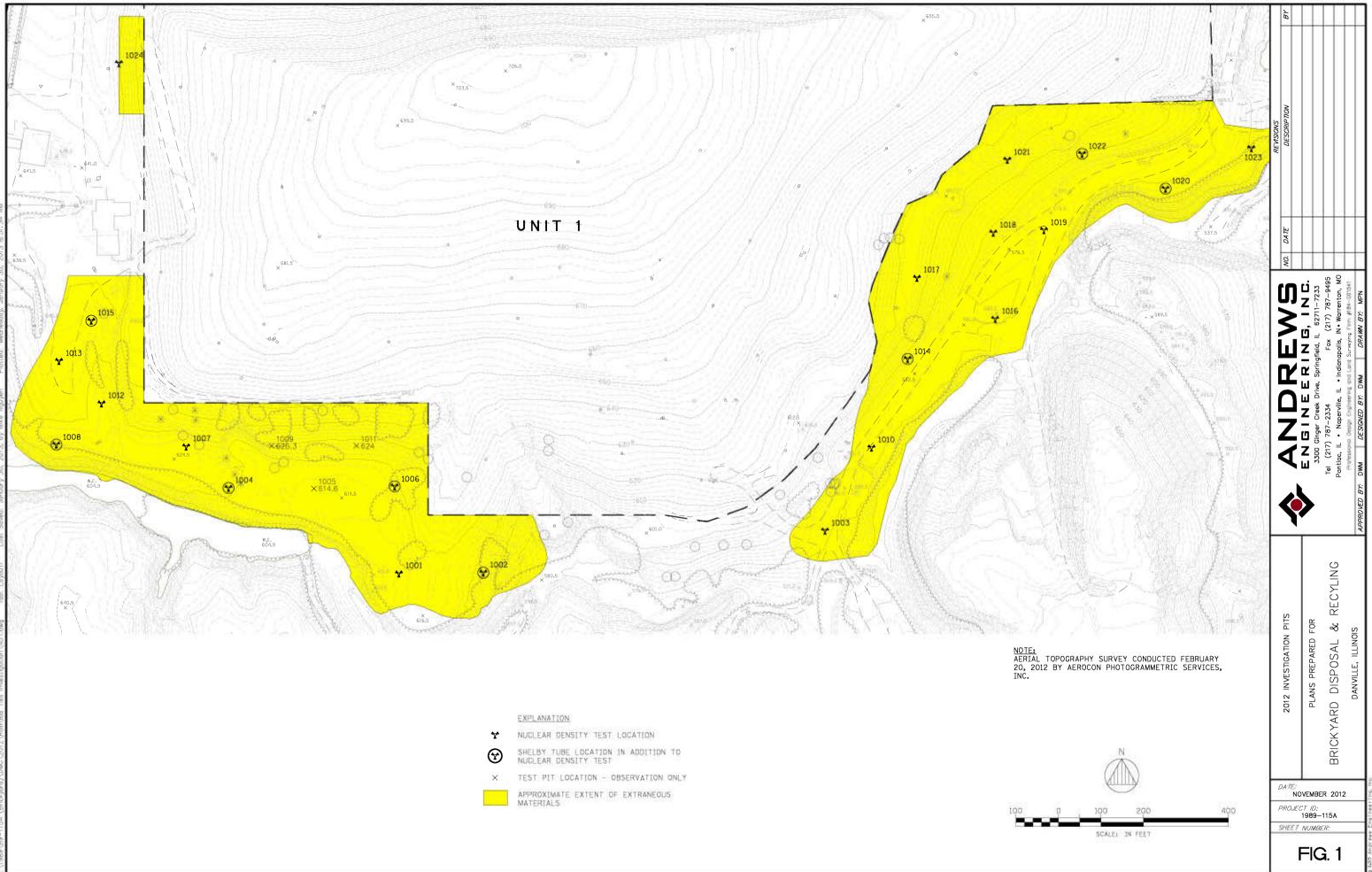
Shading indicates materials exceeded bottom of the trench.

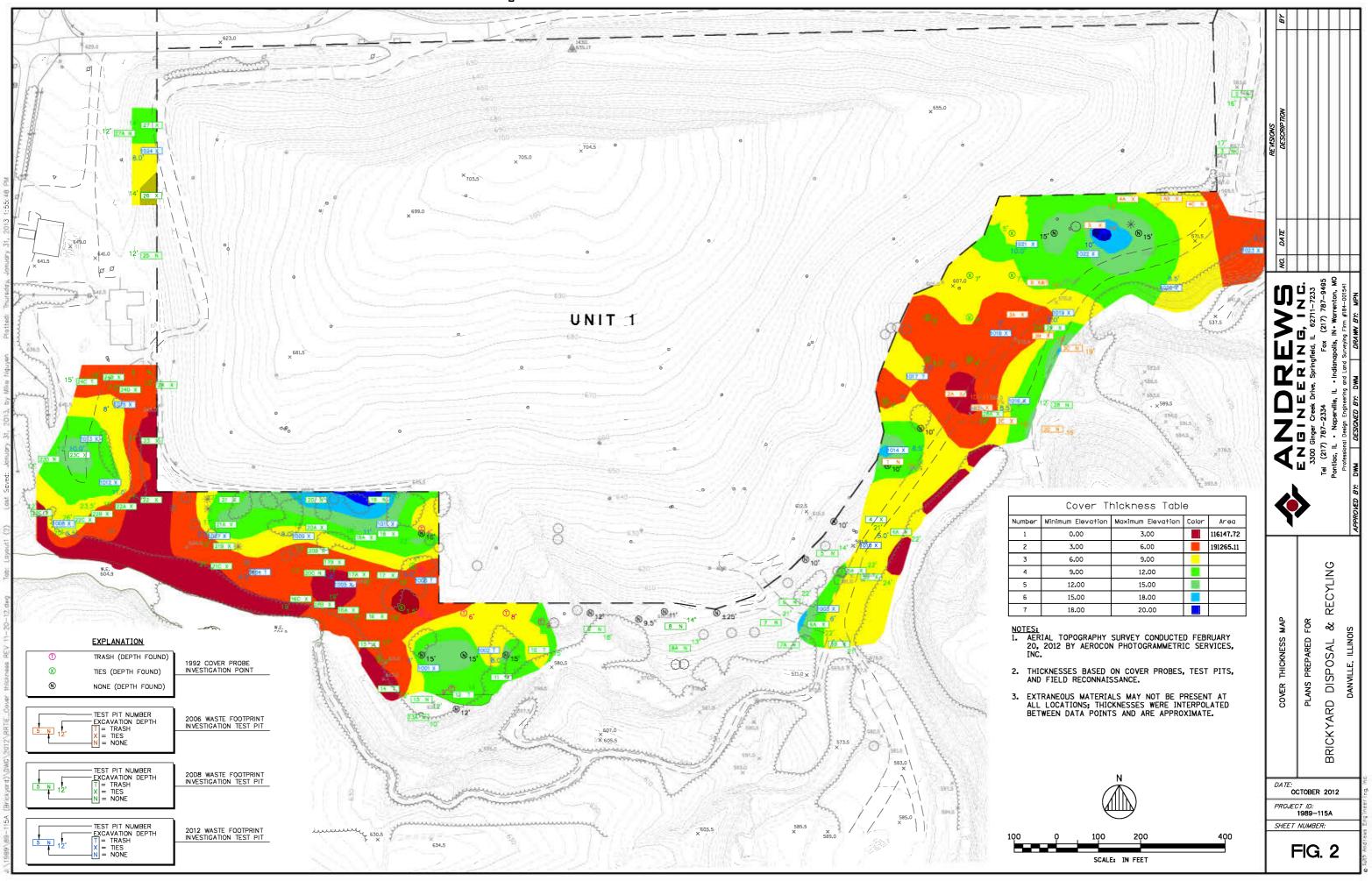
NA Not applicable or information not available.

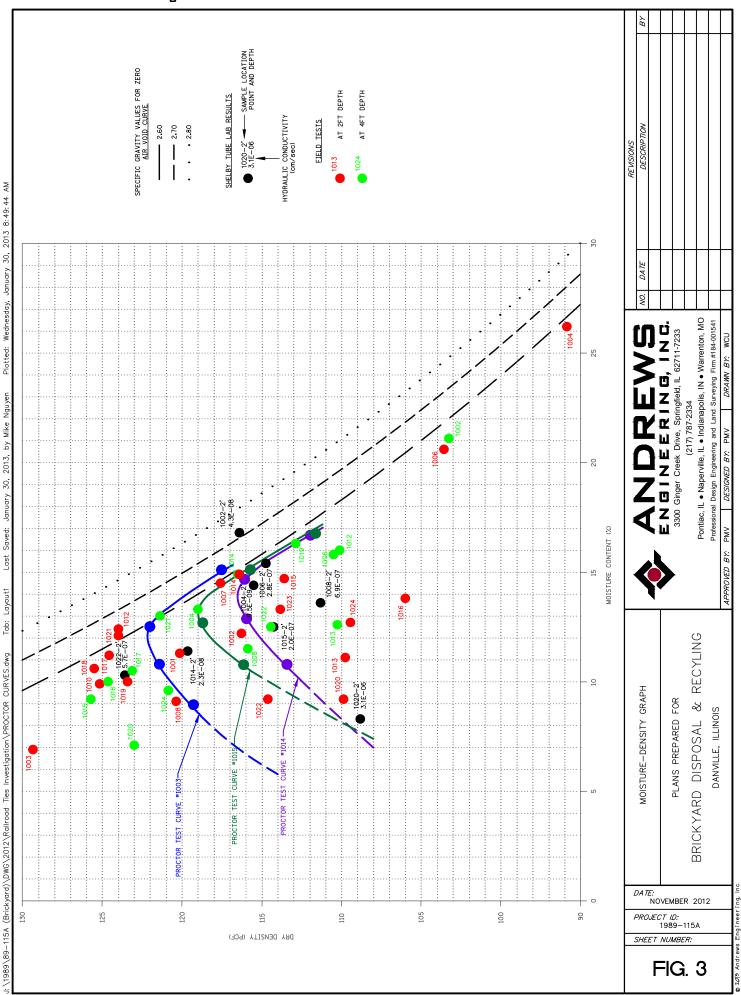
Test pits for 2012 investigation were to top of extraneous materials only.

TABLE 2

BRICKYARD DISPOSAL AND RECYCLING UNIT 1 EXTRANEOUS MATERIALS COVER HYDRAULIC CONDUCTIVITY


	Vertical Hydraulic	
Sample No.	Conductivity	Sample Interval
1002	4.30E-08	2-4 ft.
1004	9.50E-09	2-4 ft.
1006	2.80E-07	2-4 ft.
1008	6.90E-07	2-4 ft.
1014	2.30E-08	2-4 ft.
1015	2.00E-07	2-4 ft.
1020	3.10E-06	2-4 ft.
1022	5.70E-07	7-9 ft.
Maximum	3.10E-06	
Minimum	9.50E-09	
Average	6.14E-07	


All values in cm/sec.


BRICKYARD DISPOSAL AND RECYCLING FIELD MOISTURE DENSITY TEST RESULTS OF EXTRANEOUS MATERIALS COVER

Test Point	Test Depth (ft)	Max. Dry Density (pcf)	Optimum Moisture (%)	Dry Density (pcf)	Wet Density (pcf)	Water Weight (%)	Moisture (%)	Compact. (%)
1001	2	122.1	12.3	120.1	133.6	13.6	11.3	98.4
1002	2	116.5	13.9	116.3	130.7	14.4	12.2	99.8
1002	4	116.5	13.9	103.2	124.9	21.8	21.1	88.6
1003	2	122.1	12.3	129.3	138.2	8.9	6.9	105.9
1004	2	120.0	13.1	90.9	114.7	23.8	26.2	75.8
1004	4	120.0	13.1	119.0	134.9	15.9	13.3	99.2
1006	2	116.5	13.9	103.6	125.0	21.4	20.6	88.9
1006	4	116.5	13.9	110.5	128.0	17.4	15.8	94.8
1007	2	120.0	13.1	117.6	134.6	17.0	14.5	98.0
1008	2	120.0	13.1	120.3	131.2	10.9	9.1	100.3
1008	4	120.0	13.1	115.9	129.3	13.4	11.5	96.6
1010	2	122.1	12.3	125.1	137.5	12.4	9.9	102.5
1012	2	120.0	13.1	124.0	139.4	15.4	12.4	103.3
1012	4	116.5	13.9	110.1	127.7	17.6	16.0	94.5
1013	2	116.5	13.9	109.8	122.0	12.2	11.1	94.2
1013	4	116.5	13.9	110.3	124.2	13.9	12.6	94.7
1014	2	116.5	13.9	116.4	133.8	17.3	14.9	99.9
1014	4	116.5	13.9	116.5	134.3	17.7	15.2	100.0
1015	2	120.0	13.1	113.6	130.3	16.7	14.7	94.7
1015	4	120.0	13.1	125.8	137.4	11.6	9.2	104.8
1016	2	116.5	13.9	106.0	120.6	14.6	13.8	91.0
1016	4	116.5	13.9	124.6	137.1	12.5	10.0	107.0
1017	2	122.1	12.3	124.6	138.6	13.9	11.2	102.0
1017	4	122.1	12.3	123.1	136.0	13.0	10.5	100.8
1018	2	122.1	12.3	125.5	138.8	13.4	10.6	102.8
1019	2	122.1	12.3	123.4	135.7	12.3	10.0	101.1
1019	4	120.0	13.1	112.9	131.3	18.4	16.3	94.1
1020	2	116.5	13.9	109.9	120.0	10.1	9.2	94.3
1020	4	116.5	13.9	123.0	131.7	8.7	7.1	105.6
1021	2	122.1	12.3	124.0	139.0	15.0	12.1	101.6
1021	4	122.1	12.3	121.4	137.2	15.8	13.0	99.4
1022	2	122.1	12.3	114.7	125.2	10.6	9.2	93.9
1022	7	120.0	13.1	114.4	128.7	14.3	12.5	95.3
1023	2	120.0	13.1	113.9	129.0	15.1	13.3	94.9
1024	2	122.1	12.3	109.4	123.3	13.9	12.7	89.6
1024	4	122.1	12.3	120.9	132.4	11.6	9.6	99.0
Maximum		122.1	13.9	129.3	139.4	23.8	26.2	107.0
Minimum		116.5	12.3	90.9	114.7	8.7	6.9	75.8
Average		119.4	13.1	116.4	131.0	14.6	12.8	97.4

FIGURES

Electronic Filing - Recived, Clerk's Office : 05/31/2013 - * * * AS 2013-004 * * *

APPENDIX A

FIELD LOGS

Site Name: Brickyard Disposal and Recycling Boring Location: N:: 49586.8 Dat Start: Address: Danville, IL Detailed Soil and Rock Description 0 </th <th></th>	
Address: Danville, IL E: 4871.78 Surf Elev: Finish address: address: address: barville, IL address: finish address: barville, IL address: barville, IL finish finish address: barville, IL finish finish finish finish address: finish finish finish finish finish	10/31/2012
Image: state of the state	10/01/2012
Shale fragments, dense, intermixed with clayey silt/silty clay	Remarks
Shale fragments, dense, intermixed with clayey silt/silty clay	
2 3 Rail road ties encountered; EOB at 3.0 feet 4 5 6	
Rail road ties encountered; EOB at 3.0 feet	
Rail road ties encountered; EOB at 3.0 feet	
Rail road ties encountered; EOB at 3.0 feet	
8_	
9_	
Groundwater Data	
Depth While Drilling Auger Depth Rig	•
Image: Constraint of the second se	Andrews Engineering

AEEL	Job Nun	nbeilectr	<u>onic Filin</u> 1989-115A	g - Ke	ecived, Clerk's Offeena 06%81/2013002* * * AS 2	201 3 P4	<u></u> 104 * *	Ť
Site N			Disposal and		ng Boring Location:	Da	t Start:	10/31/2012
Addre	ss:	Danville, I	L	T	N: 49586.79 E: 3071.78 Surf Elev: 604.68 ft		Finish:	10/31/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detailed Soil and Rock Description	PPT (Qu)	QL	Remarks
				-	Vegetative layer			
				1_ 	Brown clayey silt/silty clay, with shale fragments			
				-	Brown clayey silt/silty clay			
				4				
				5_ -				
				6_ 7				
				- 8_	Refuse encountered; EOB at 8 feet			
				9_				
				10_ - 11				
	Grou	undwater Da	ata	12				
$\mathbf{\nabla}$	Depth	While Drillin	ng		Auger Depth Rig Rotary Depth Geologist Tech: Jamie Stufflebea Driller/Co. KR&G Backhoe	m	\	Andrews Engineering
							•	

EEI Job	o Num	belectro	<u>anic Filin</u> 1989-115A	g - Re	ecived, Clerk's Of	fileen: 0.50%&1/	2013 ^{@3****} AS 2	201 3 ₽€	904 * *	*
Site Nam		-	Disposal and	Recyclir	ng	Boring Location: N:	49686.79	Da	t Start:	10/31/2012
ddress:		Danville, IL	-	1		N: E: Surf Elev:	3878.34 580.10 ft		Finish:	10/31/2012
Sample Number	Sample Device	Recovery (%)	Recovery (%) Lith. Symbol		Detaile	ed Soil and Rock Desc	pription	PPT (Qu)	Q	Remarks
S S S S S S S S S S S S S S S S S S S	<u>s</u>			3_ - 4_ 5_ 6_	Gray shale fragments, de and clay Railrod ties encountered		e varying amounts of silt			
	Grou	ndwater Da	ta	9 10 11						
	Depth	After Drilling	ng		Auger Depth Rotary Depth Driller/Co. <u>KR&G Ba</u>	Geologist	Tech: Jamie Stufflebear	<u>n</u>	\	Andrews Engineering

AEELJ	lob Nun		ONIC FILIN 1989-115A	g - 178	ecived, Clerk's Utilizer: Nover/2013.004*** AS	ZUIJPag	104	
Site Na	ame:	Brickyard	Disposal and	Recycli	ng Boring Location: N: 49786.79	Dat	Start:	10/31/2012
Addres	ss:	Danville, Il	L		N: 49786.79 E: 2471.78 Surf Elev: 619.00 ft		Finish:	10/31/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detailed Soil and Rock Description	PPT (Qu)	П	Remarks
				-	Vegetative layer	_		
				1_ 	clayey silt/silty clay intermixed with slag from 0.5 to 3.5 feet			
				2_				
				3_				
				4_	Brown clayey silt/silty clay			
				- 5_	Railroad ties encountered; EOB at 4.5 feet			
				6_				
				7_				
				8_				
				9_				
				- 10_				
				- 11_				
				12				
▼	Depth	undwater Da While Drillir	ng		Auger Depth Rig			
\bigtriangledown	Depth	After Drilling	g		Rotary Depth Geologist Tech: Jamie Stufflebe Driller/Co. KR&G Backhoe	eam	∻	Andrews Engineering

						AS ZUIJP49		
te Na	ame:		Disposal and	Recyclir	N: 49786.79		Start:	10/31/2012
dres	ss:	Danville, I	L	1	N: 49786.79 E: 2671.78 Surf Elev: 614.60 ft		Finish:	10/31/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detailed Soil and Rock Description	PPT (Qu)	OId	Remarks
				_	Vegetative layer			
				1_	Shale fragments intermixed with silty clay/clayey silt, dense			
				2_	Railroad ties encountered; EOB at 1.5 feet			
				3_				
				4_				
				- 5_				
				6_				
				7_				
				- 8_				
				- 9_				
				- 10_				
				- 11_				
	Grou	ndwater Da	ata	12				
	Depth	While Drilli	ng		Auger Depth Rig			
7	Depth	After Drillin	g		Rotary Depth Geologist Tech: Jamie Stuffl Driller/Co. KR&G Backhoe	ebeam	∽	Andrews Engineering

AEEL	Job Nun	nbeilectr	00000000000000000000000000000000000000	g - Ke	cived, Clerk's Utilitera Mb%&1/2013* AS	ZUIJPA	984	
Site Na	ame:	Brickyard	Disposal and	Recyclii	Boring Location:	Da	t Start:	10/31/2012
Addres	ss:	Danville, I	L		N: 49786.79 E: 2871.78 Surf Elev: 616.50 ft		Finish:	10/31/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detailed Soil and Rock Description	PPT (Qu)	QIA	Remarks
		undwater Da		1 2 3 4 5	Vegetative layer brown sandy silt, some clay, with shale fragments, very wet brown clayey silt/silty clay, very wet Refuse encountered; EOB at 5.5 feet			
	Depth	After Drillin	ng		Auger Depth Rig Rotary Depth Geologist	am	<u>^</u>	Andrews Engineering
			y 		Driller/Co. KR&G Backhoe			Ligineeling

						201 3 P4		
	ame:		Disposal and	Recycli	ng Boring Location: N: 49886.79 E: 2371.78	Dat	Start:	10/31/2012
dres	ss:	Danville, I	L		N: 49886.79 E: 2371.78 Surf Elev: 623.50 ft		Finish:	10/31/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detailed Soil and Rock Description	PPT (Qu)	Old	Remarks
					Vegetative layer			
				1				
				_	Brown clayey silt/silty clay, very wet			
				2				
				-				
				3				
				-				
				4	Railroad ties encountered; EOB at 3.5 feet			
				-				
				5				
				-				
				6				
				-				
				7				
				-				
				8				
				-				
				9				
				_				
				10				
				11				
				''-				
				12				
7	Grou Depth	ndwater Da While Drillir	ita ng		Auger Depth Rig		· · · · · ·	
-	Donth		a		Rotary Depth Geologist Tech: Jamie Stufflebea	n		Andrews
7	Depth	After Drillin	9		Driller/Co. KR&G Backhoe			 Engineering

AEEI JO	b Nur	belectr	onic Filin 1989-115A	g - Ke	cived, Clerk's Utilær:، الله الله الله الله الله الله الله الل	ZUIJPa	e4 * *	Ť
Site Nar	me:	Brickyard	Disposal and	Recyclir	Boring Location: N: 49886.79	Dat	Start:	10/31/2012
Address	s:	Danville, I	L		N: 49886.79 E: 2071.78 Surf Elev: 623.70 ft		Finish:	10/31/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detailed Soil and Rock Description	PPT (Qu)	OIA	Remarks
				-	Vegetative layer	_		
				1_ 2	Brown sandy silt, some clay, with shale fragments			
				3_ - 4_	Brown clayey sand			
				- 5_		_		
				6_ - 7_	Railroad ties encountered; EOB at 5.5 feet			
				- 8_ -				
				9_ - 10_				
				- 11_				
	Grou	ndwater Da	ita	12				
• -	Depth	While Drillin After Drillin	ng		Auger Depth Rig Rotary Depth Geologist Driller/Co. KR&G Backhoe	am	.	Andrews Engineering

Site Na	ime:	Brickyard	Disposal and	Recyclir	ng	Boring Location:	_	Dat	t Start:	10/31/2012
ddres	s:	Danville, I	L			N: 49886.7 E: 2571.78 Surf Elev: 626.30 f			Finish:	10/31/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detailed	I Soil and Rock Description		PPT (Qu)	QIA	Remarks
				- 1_	Shale fragments, dense, ir clay	ntermixed with clayey silt/silty				
				- 2_						
				3_						
				4						
				5						
				6_						
				7_						
				8_ - 9						
				_	Railroad ties encountered;	EOB at 9.0 feet				
				- 11_						
	Grou	ndwater Da	ata	12						
7		While Drilli After Drillin			Auger Depth Rotary Depth Driller/Co. <u>KR&G Bac</u>	Geologist <u>Tech: Ja</u>	amie Stufflebeam		�	Andrews Engineering

		ОПІС ГІ ІП 1989-115А	g - ite	ecived, Clerk's Utilizer: Novel/2013040* * * AS 2	UIJPag	184	•
ite Name	e: Brickyard	Disposal and	Recyclir	ng Boring Location: N: 49886.79	Dat	Start:	11/1/2012
ddress:	Danville,	IL		N: 49886.79 E: 3978.34 Surf Elev: 581.10 ft		Finish:	11/1/2012
Sample Number	Sample Device Recovery (%)	Lith. Symbol	Depth (feet)	Detailed Soil and Rock Description	PPT (Qu)	QL	Remarks
			- 1_ 2_ 3_ 4_ 5_	Brown sandy silt, some clay, with shale fragments Shale fragments, some brick, dense, intermixed with clayey silt/silty clay Railroad ties encountered; EOB at 5.0 feet			
	Groundwater D	ata	10_ 11_ 12_				
De	epth After Drilli	ng		Auger Depth Rig Rotary Depth Geologist Tech: Jamie Stufflebean Driller/Co. KR&G Backhoe	<u>n</u>	\$	Andrews Engineering

AEEL	lob Nun	belectr	onic Filin 1989-115A	g - Ri	ecived, Clerk's Of	fæær:ª NGr/ණි//	2013041***	AS 2013¤€	104 * *	*
Site Na			Disposal and			Boring Location:		Da	t Start:	10/31/2012
Addres	SS:	Danville, II	L			N: E: Surf Elev:	49886.79 2771.78 624.00 ft		Finish:	10/31/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detaile	d Soil and Rock Des		PPT (Qu)	PID	Remarks
				-	Shale fragments, some la silt/silty clay, dense	ırge, intermixed with	n clayey			
				11_ 12	Railroad ties encountered	l; EOB at 11.0 feet				
▼		indwater Da While Drillir			Auger Depth	Rig				
∇	Depth	After Drilling	g		Rotary Depth Driller/Co. <u>KR&G Ba</u>		Tech: Jamie Stuff	lebeam	♦	Andrews Engineering

AEEI.	Job Nun	nb eiectr i	onic Filin 1989-115A	g - Ke	ecived, Llerk's Uf	fæer:• 06%&1/2013042* * * /	12 201 3 =4	<u>超4 * *</u>	*
	ame:		Disposal and			Boring Location:	Da	t Start:	10/30/2012
ddre	SS:	Danville, II	L			N: 49986.79 E: 2171.78 Surf Elev: 625.20 ft		Finish:	10/30/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detaile	ed Soil and Rock Description	PPT (Qu)	DIA	Remarks
					Vegetative layer				
				1_ 2	Brown silty clay/clayey sil	It, with shale fragments			
				- 3_ -					
				4_ - 5_	Brown clayey silt/silty cla	y			
				- 6_ -					
				7_ - 8_					
				9_					
				10_ -					
				11_ 12	Railroad ties encountered	d; EOB at 11.0 feet			
7		indwater Da While Drillir			Auger Depth	Rig		· · · · ·	
7	Depth	After Drilling	g		Rotary Depth Driller/Co. <u>KR&G Ba</u>		ebeam	♦	Andrews Engineering

AEEL	Job Nun	nb electr	onic Filin 1989-115A	g - Re	ecived, Clerk's Of	fæe•• 05%&1/2013°43*** AS 1	2013={)04 * *	*
Site N			Disposal and	Recyclir	ng	Boring Location: N: 50086.79	Da	t Start:	10/30/2012
Addre	ss:	Danville, I	L			N: 50086.79 E: 2071.78 Surf Elev: 635.00 ft		Finish:	10/30/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detaile	ed Soil and Rock Description	PPT (Qu)	DIA	Remarks
					Vegetative layer				
				1					
				_	Brown clayey silt/silty clay	y, with shale fragments			
				2					
				_					
				3_					
				4_					
				5_	Brown clayey silt/silty clay	y, with shale fragments, some brick and slag			
				6_					
				7_					
				8_					
				9_	Brown clayey silt/silty clay	y			
				10					
				_	Railroad ties encountered	d; EOB at 10.0 feet			
				11_					
		Indwater Da		12					
▼	Depth	While Drilli	ng		Auger Depth Rotary Depth		m		Andrews
\bigtriangledown	Depth	After Drillin	g		Driller/Co. <u>KR&G Bac</u>			V	 Engineering
<u> </u>									

			ОПІС ГІЦП 1989-115А	g - Ite	ecived, Clerk's Utilizera Novédi/2013044*** AS 2		984	
Site Na	ame:	Brickyard	Disposal and	Recyclir	ng Boring Location: N: 50086.79	Da	t Start:	10/31/2012
Addres	ss:	Danville, I	L	r	N: 50086.79 E: 4078.34 Surf Elev: 585.80 ft		Finish:	10/31/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detailed Soil and Rock Description	PPT (Qu)	QIA	Remarks
				-	Vegetative layer			
				1_ 2_	Brown clayey silt/silty clay, with shale fragments			
				3_ - 4_	Brown sandy silt, some clay and brick, with shale fragments			
				- 5_				
				6 - 7	Brown clayey silt/silty clay, with shale fragments			
				- 8_				
				_	Railroad ties encountered; EOB at 8.5 feet			
				10_ - 11_				
•		Indwater Da While Drillin		12	Auger Depth Rig			
∇	Depth	After Drillin	g		Rotary Depth Geologist Tech: Jamie Stufflebear Driller/Co. KR&G Backhoe	n	❖	Andrews Engineering

	חשת מסנ		ONIC FILIN 1989-115A	g - Ke	ecived, Clerk's Uther; 06%31/2013045* * * AS .	ZUIJPa	194	.1.
Site Na	ame:	Brickyard	Disposal and	Recyclii	Boring Location:	Dat	Start:	10/30/2012
Addres	ss:	Danville, I	L		N: 50186.79 E: 4278.34 Surf Elev: 633.50 ft	_	Finish:	10/30/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detailed Soil and Rock Description	PPT (Qu)	QId	Remarks
San	San	Rec	Lith	1 2 3 4 5 6 7 8	Vegetative layer Brown clayey silt/silty clay, with shale fragments Railroad ties encountered; EOB at 8.0 feet			
				- 10_ - 11_				
▼ ▽	Depth	undwater Da While Drillin After Drillin	ng		Auger Depth Rig Rotary Depth Geologist Tech: Jamie Stufflebea Driller/Co. KR&G Backhoe		\	Andrews Engineering

		1989-115A	9		UIJPag		
te Name:	Brickyard	Disposal and	Recyclii	ng Boring Location: N: 50186.79	Dat	Start:	10/31/2012
ldress:	Danville, I	L	1	N: 50186.79 E: 4278.34 Surf Elev: 578.60 ft		Finish:	10/31/2012
Sample Number	Cample Device Recovery (%)	Lith. Symbol	Depth (feet)	Detailed Soil and Rock Description	PPT (Qu)	CId	Remarks
			2_ 3_ 4_ 5_ 6_ 7_ 8_	Brown sandy silt/silty sand, some clay, with shale fragments			
G Dep	roundwater Da oth While Drillin	ata ng	12	Auger Depth Rig			
7 Dep	oth After Drillin	g		Rotary Depth Geologist Tech: Jamie Stufflebean Driller/Co. KR&G Backhoe	<u>n</u>	৵	Andrews Engineering

					ecived, Llerk's Utilizer: Novédi/2013 ^{017***} AS 2			
	ame:		Disposal and	Recyclir	N: 50286.79	Dat	t Start:	11/1/2012
dres	ss:	Danville, I	L		E: 4078.34 Surf Elev: 603.90 ft		Finish:	11/1/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detailed Soil and Rock Description	PPT (Qu)	QIA	Remarks
				-	Vegetative layer			
				1 2	Brown sandy silt/silty sand, some clay, with shale fragments			
				3_ -				
				4_ - 5_	Shale fragments, dense, intermixed with clayey silt/silty clay			
				6_ -				
				7_ 	Refuse encountered; EOB at 7.5 feet			
				- 9_				
				- 10_ -				
				11_ 12				
	Grou Depth	indwater Da While Drillir	nta ng		Auger Depth Rig		I	
		After Drillin			Rotary Depth Geologist Tech: Jamie Stufflebean Driller/Co. KR&G Backhoe	1	�	Andrews Engineering

: Brickyard Danville, Oecovery Sample Castron	Disposal and L Ogupo (C L L L L L L L L L L L L L L L L L L	Depth (feet)	ng Boring Location: N: 50386.79 E: 4278.34 Surf Elev: 577.60 ft		Start: Finish:	<u>11/1/2012</u> 11/1/2012
Sample Device Recovery (%)	Lith. Symbol	h (feet)				
		Deptl	Detailed Soil and Rock Description	PPT (Qu)	DIA	Remarks
		-	Vegetative layer			
		1	Shale fragments, some brick and slag, intermixed with clayey silt/silty clay, trace sand			
		2_				
		3_	Railroad ties encountered: EOB at 3.0 feet			
		4_				
		5_				
		6_				
		7_				
		8_				
		9_				
		- 10_				
		- 11_				
Groundwater D	ata	12	Aurora Danthan Di			
			Rotary Depth Geologist Tech: Jamie Stufflebean	<u>1</u>		Andrews Engineering
F	oth While Drilli	roundwater Data oth While Drilling	roundwater Data roundwater Data th While Drilling	roundwater Data th While Drilling Auger Depth Rotary Depth Rotary Depth Geologist Tech: Jamie Stufflebean	Railroad ties encountered; EOB at 3.0 feet	roundwater Data th After Drilling Auger Depth Railroad ties encountered; EOB at 3.0 feet

EEI JOI	b Num	belectri	pnic Filing 1989-115A	g - Re	ecived, Clerk's Officer; 05%&1/2013as* * * AS /	2013=4	••••4 * *	*
te Narr	ne:	Brickyard	Disposal and	Recyclir	ng Boring Location:	Da	t Start:	11/1/2012
ldress	:	Danville, Il			N: 50386.79 E: 4478.34 Surf Elev: 575.90 ft		Finish:	11/1/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detailed Soil and Rock Description	PPT (Qu)	DIA	Remarks
				-	Clayey silt/silty clay, intermixed with shale fragments, dense			
				6_ - 7_	Railroad ties encountered; EOB at 6.0 feet			
				8_ - 9_ 10_				
	Grou	ndwater Da While Drillir	ta	- 11_ 	Auger Depth Rig			
_		After Drilling			Rotary Depth Geologist Tech: Jamie Stufflebea Driller/Co. KR&G Backhoe	m	\$	Andrews Engineering

	21000	1989-115A	9	ecived, Clerk's Utilizer: Novel/2013020* * * AS 2	. ∐]3 ₽₫@		
te Name:	Brickyard	Disposal and	Recyclir	ng Boring Location: N: 50486.79	Dat	Start:	11/1/2012
dress:	Danville, I	L	I	N: 50486.79 E: 4678.34 Surf Elev: 565.60 ft		Finish:	11/1/2012
Sample Number Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detailed Soil and Rock Description	PPT (Qu)	QIA	Remarks
			- 1_ 2_ 3_ - 3_ - - - - - - - - - - - - - - -	Vegetative layer Brown sandy silt/silty sand, some clay Railroad ties encountered; EOB 8.5 feet			
Gro Dept	bundwater Da h While Drilli	ata ng		Auger Depth Rig			
7 Dept	h After Drillin	g		Rotary Depth Geologist Tech: Jamie Stufflebear Driller/Co. KR&G Backhoe	n	৵	Andrews Engineering

AEEL	Job Nun	^b Electr	onic Filin 1989-115A	<u>g - Re</u>	ecived, Clerk's Of	ffæer¤ 05%&1/2013œ1* * * A	S 201 3 ≈4	304 * *	*
Site N			Disposal and	Recyclir	ng	Boring Location: N: 50586.79	Da	t Start:	11/1/2012
Addre	SS:	Danville, I	L			N: 50586.79 E: 4278.34 Surf Elev: 598.20 ft		Finish:	11/1/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detaile	ed Soil and Rock Description	PPT (Qu)	PID	Remarks
					Vegetative layer				
				1					
				_	Brown clayey silt/silty cla	v with shale fragments			
				2	Brown daycy silvsily da	y, with shale magnetics			
				2_					
				-					
				3_					
				-					
				4					
				-					
				5_					
				-					
				6					
				-	Shale fragments, intermi	ixed with clayey silt/silty clay, dense			
				7_					
				-					
				8					
				_					
				9					
					Brown clayey silt/silty cla	v			
				10		, ,			
				_	Poilroad tion appointero	d: EOP at 10.0 fact			
				_	Railroad ties encountered	d, EOB at 10.0 leet			
				11_					
		Indwater Da While Drilli		12	Auger Depth	Rig			
▼					Rotary Depth		beam		Andrews
\bigtriangledown	Depth	After Drillin	g		Driller/Co. KR&G Ba				Engineering
								•	

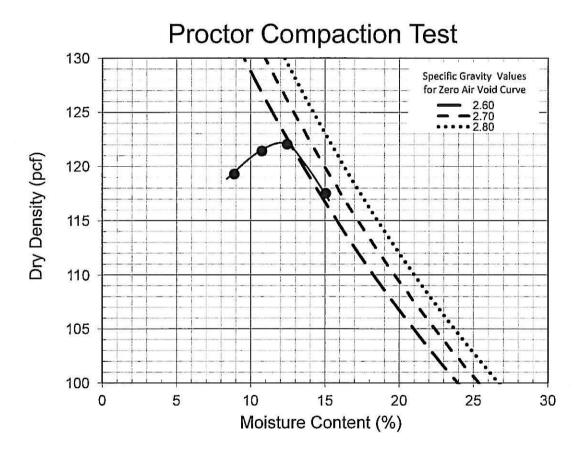
	ame:		Disposal and	Recyclir	ng	Boring Location: N: 50586.79 E: 4478.3	Da	at Start:	11/1/2012
ddres	SS:	Danville, II	-	1		E: 4478.3 Surf Elev: 578.00 ft		Finish:	11/1/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Deta	ailed Soil and Rock Description	PPT (Qu)	OIA	Remarks
					Vegetative layer				
				1					
				-	Shale fragments large	, intermixed with clayey silt/silty clay, dens	0		
				-	Shale haghlents, large	, internixed with clayey silvsity clay, dens	e		
				2_					
				-					
				3_					
				-					
				4					
				-					
				5_					
				-					
				6					
				-					
				7_					
					Brown clayey silt/silty c	lay			
				8					
				_					
				9					
				10					
				-	Railroad ties encounter	red: EOB at 10.0 feet			
				-					
				11_					
7		Indwater Da While Drillir		12	Auger Depth	Rig			
						Geologist <u>Tech: Jamie Stuffle</u>			Andrews
7	Depth	After Drilling	9		Driller/Co. KR&G E	Backhoe			 Engineering

		~~£16611 1	1989-115A	y - N	ecived, Clerk's Utilizera Novel/2013023**** AS	ZUIJPa	184	
Site Nar	ne:	Brickyard I	Disposal and	Recyclii	Boring Location:	Dat	t Start:	11/1/2012
Address	3:	Danville, II	-	1	N: 50586.79 E: 4878.34 Surf Elev: 556.80 ft		Finish:	11/1/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detailed Soil and Rock Description	PPT (Qu)	QL	Remarks
<u> </u>	<u>o</u>			1 2 3 4 5 6 7 8 9 10 11	Vegetative layer Brown sandy silt, some clay and shale fragments Railroad ties encountered; EOB at 4.0 feet			
▼ [[]	Grou Depth	I Indwater Da While Drillir	ita ng	12	Auger Depth Rig			
	Depth	After Drilling	9		Rotary Depth Geologist Tech: Jamie Stufflebe Driller/Co. KR&G Backhoe	am	$\mathbf{\hat{v}}$	Andrews Engineering

		EIELLI	UIIIL: I IIIII 1989-115A	y - K	ecived, Clerk's Utiliter: Oby &1/2013024*** AS	ZUIJPag	1814	
Site N	ame:	Brickyard	Disposal and	Recyclir	Boring Location:	Dat	Start:	10/30/2012
Addre	ss:	Danville, I	L	r.	N: 50786.79 E: 2212.92 Surf Elev: 637.80 ft		Finish:	10/30/2012
Sample Number	Sample Device	Recovery (%)	Lith. Symbol	Depth (feet)	Detailed Soil and Rock Description	PPT (Qu)	QIA	Remarks
					Vegetative layer	_		
				1_ -	Shale fragments, dense, intermixed with clayey silt/silty clay			
				2_				
				3_				
				4_				
				- 5_				
				- 6_				
				7_				
				- 8_				
				9_	Railroad ties encountered; EOB at 8.0 feet			
				- 10_				
				- 11_				
	Grou	Indwater Da	ata	12	Auger Depth			
\checkmark		While Drillin			Auger Depth Rig Rotary Depth Geologist Driller/Co. KR&G Backhoe	am	♦	Andrews Engineering

APPENDIX B

LABORATORY SOILS ANALYSES



TRI/ENVIRONMENTAL, INC.

A Texas Research International Company

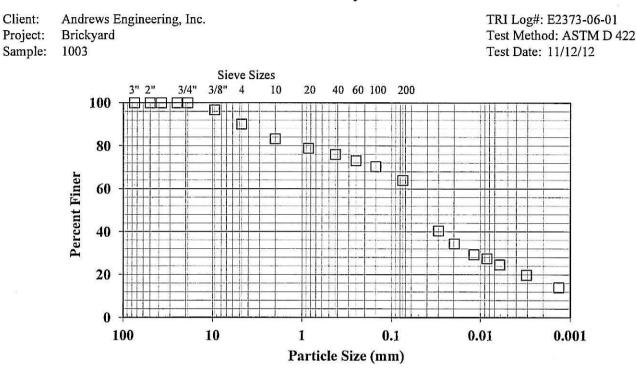
Client:Andrews Engineering, Inc.Project:BrickyardTRI Log No.:E2373-06-01Sample Number:# 1003Test Method:ASTM D698 - Method ARammer Type:Automatic

Maximum Dry Density (pcf): 122.1 Optimum Water Content (%): 12.3

John M. Allen, P.E., 11/13/2012

Quality Review/Date

Tested By:Kahlil Hart


The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI/Environmental, Inc.

A Texas Research International Company

Particle Size Analysis for Soils

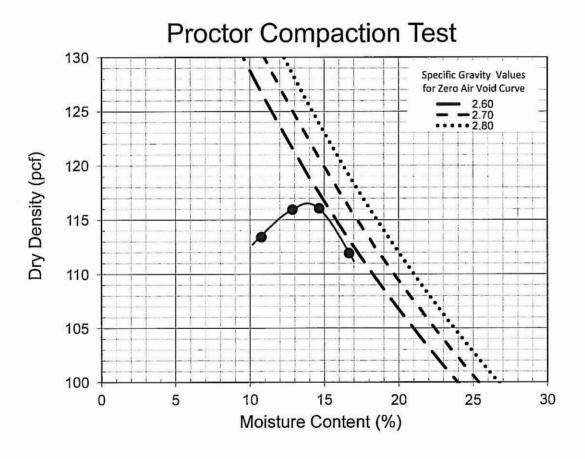
Sieve A	Analysis		
Sieve Size	Percent Passing		
3 in.	100.0		
2 in.	100.0		
1.5 in.	100.0		
1 in.	100.0		
3/4 in.	100.0		
3/8 in.	96.7		
No. 4 (4.75 mm)	90.1		
No. 10 (2.00 mm)	83.2		
No. 20 (850 µm)	78.8		
No. 40 (425 μm)	76.0		
No. 60 (250 µm)	73.1		
No. 100 (150 µm)	70.3		
No. 200 (75 μm)	63.9		
Hydromet	er Analysis		
Particle Size	Percent Passing		
0.074 mm	63.4		
0.005 mm	22.8		
0.001 mm	12.9		

Notes: Soil classifies as a sandy lean clay (CL) in accordance with ASTM D2487.

Plastic Index (AST)	M D 4318) Results
Liquid Limit	28
Plastic Limit	15
Plastic Index	13
Notes: Specimen was air Limit procedure was use	

John M. Allen, P.E., 11/14/2012 Quality Review/Date Tested by: Kahlil Hart & Tierra Jackson

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.



TRI/ENVIRONMENTAL, INC.

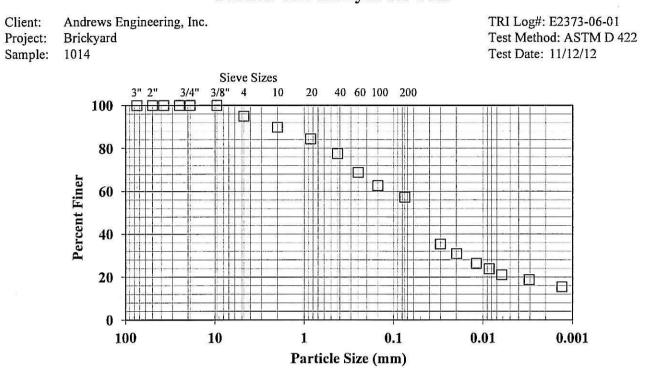
A Texas Research International Company

Client:Andrews Engineering, Inc.Project:BrickyardTRI Log No.:E2373-06-01Sample Number:# 1014Test Method:ASTM D698 - Method ARammer Type:Automatic

Maximum Dry Density (pcf): 116.5 Optimum Water Content (%): 13.9

John M. Allen, P.E., 11/13/2012

Tested By:Kahlil Hart


The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

Quality Review/Date

TRI/ENVIRONMENTAL, INC. A Texas Research International Company

Particle Size Analysis for Soils

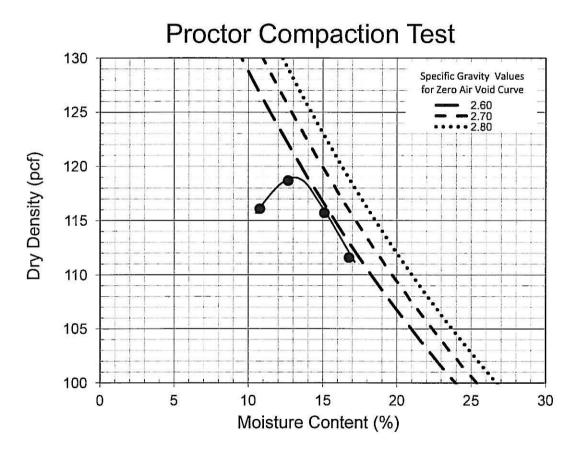
Sieve A	Analysis
Sieve Size	Percent Passing
3 in.	100.0
2 in.	100.0
1.5 in.	100.0
1 in.	100.0
3/4 in.	100.0
3/8 in.	100.0
No. 4 (4.75 mm)	94.9
No. 10 (2.00 mm)	89.8
No. 20 (850 µm)	84.4
No. 40 (425 µm)	77.5
No. 60 (250 µm)	68.8
No. 100 (150 µm)	62.7
No. 200 (75 µm)	57.3
Hydromet	er Analysis
Particle Size	Percent Passing
0.074 mm	56.8
0.005 mm	20.2
0.001 mm	14.9

Notes: Soil classifies as a sandy lean clay (CL) in accordance with ASTM D2487.

Plastic Index (ASTM	D 4318) Results
Liquid Limit	30
Plastic Limit	15
Plastic Index	15
Notes: Specimen was air d Limit procedure was used.	

John M. Allen, P.E., 11/14/2012 Quality Review/Date Tested by: Kahlil Hart & Tierra Jackson

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.



TRI/ENVIRONMENTAL, INC.

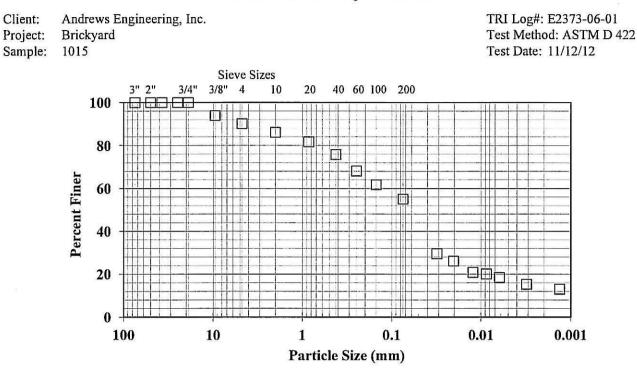
A Texas Research International Company

Client:Andrews Engineering, Inc.Project:BrickyardTRI Log No.:E2373-06-01Sample Number:# 1015Test Method:ASTM D698 - Method ARammer Type:Automatic

Maximum Dry Density (pcf): 120.0 Optimum Water Content (%): 13.1

John M. Allen, P.E, 11/13/2012

Quality Review/Date


Tested By:Kahlil Hart

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI/ENVIRONMENTAL, INC. A Texas Research International Company

Particle Size Analysis for Soils

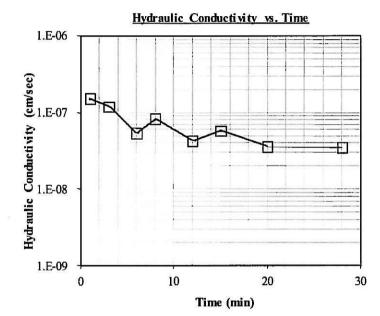
Sieve Analysis		
Sieve Size	Percent Passing	
3 in.	100.0	
2 in.	100.0	
1.5 in.	100.0	
1 in.	100.0	
3/4 in.	100.0	
3/8 in.	93.9	
No. 4 (4.75 mm)	90.1	
No. 10 (2.00 mm)	86.1	
No. 20 (850 µm)	81.7	
No. 40 (425 µm)	75.8	
No. 60 (250 µm)	68.1	
No. 100 (150 µm)	61.7	
No. 200 (75 µm)	55.1	
Hydromet	er Analysis	
Particle Size	Percent Passing	
0.074 mm	54.5	
0.005 mm	17.2	
0.001 mm	12.6	

Notes: Soil classifies as a sandy lean clay (CL) in accordance with ASTM D2487.

Plastic Index (AST)	M D 4318) Results
Liquid Limit	29
Plastic Limit	15
Plastic Index	14
Notes: Specimen was air Limit procedure was used	

John M. Allen, P.E., 11/14/2012 Quality Review/Date Tested by: Kahlil Hart & Tierra Jackson

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.



TRI/ENVIRONMENTAL, INC.

A Texas Research International Company

Hydraulic Conductivity

Client:	Andrews Engineering, Inc.
Project:	Brickyard
Sample:	1002

Note: A B-value of 0.95 was achieved for the undisturbed specimen. Permeation measurements were made with a mercury U-tube. The effective confining pressure was 5 psi per test request.

 TRI Log#:
 E2373-06-01

 Test Method:
 ASTM D 5084, Method F

 Test Date:
 11/09/12

INITIAL VALUES	
Avg. Sample Height (in)	2.79
Avg. Sample Diameter (in)	2.84
Wet Weight (g)	630.1
Area (in ²)	6.32
Volume (cc)	289.3
Initial Water Content (%)	16.8
Total Density (pcf)	136.0
Dry Density (pcf)	116.4
G _s (assumed)	2.65
Degree of Saturation (%)	100.0
Void Ratio	0.42
Porosity	0.30
1 Pore Volume (cc)	85.6

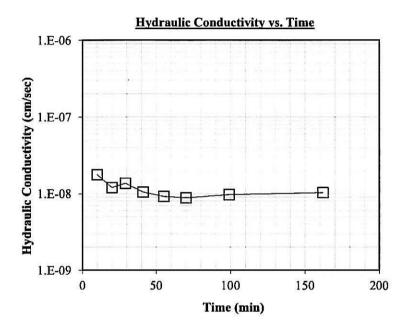
Hydraulic Conductivity

Time (min)	k at 20 deg C
	(cm/sec)
1	1.53E-07
3	1.20E-07
6	5.41E-08
8	8.31E-08
12	4.26E-08
15	5.82E-08
20	3.58E-08
28	3.51E-08
Average ¹	: 4.3E-08

1: Average corrected hydraulic conductivity (k_{20}) is obtained from the last 4 average readings.

John M. Allen, P.E., 11/12/2012 Analysis & Quality Review/Date Tested by: Tierra Jackson

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.



TRI/Environmental, Inc.

A Texas Research International Company

Hydraulic Conductivity

Client: Andrews Engineering, Inc. Project: Brickyard Sample: 1004

Note: A B-value of 0.97 was achieved for the undisturbed specimen. Permeation measurements were made with a mercury Utube. The effective confining pressure was 5 psi per test request.

TRI Log#:	E2373-06-01
Test Method:	ASTM D 5084, Method F
Test Date:	11/09/12

INITIAL VALUES	
Avg. Sample Height (in)	2.14
Avg. Sample Diameter (in)	2.85
Wet Weight (g)	473.8
Area (in ²)	6.39
Volume (cc)	224.0
Initial Water Content (%)	14.4
Total Density (pcf)	132.1
Dry Density (pcf)	115.5
G _s (assumed)	2.65
Degree of Saturation (%)	88.2
Void Ratio	0.43
Porosity	0.30
1 Pore Volume (cc)	67.6

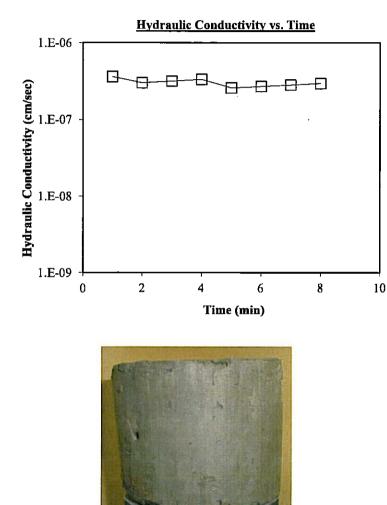
Hydraulic Conductivity

Time (min)	k at 20 deg C
	(cm/sec)
10	1.77E-08
20	1.20E-08
29	1.37E-08
41	1.05E-08
55	9.21E-09
70	8.81E-09
99	9.73E-09
162	1.03E-08
Average ¹ :	9.5E-09

1: Average corrected hydraulic conductivity (k_{20}) is obtained from the last 4 average readings.

John M. Allen, P.E., 11/12/2012 Analysis & Quality Review/Date Tested by: Tierra Jackson

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.



TRI/Environmental, Inc.

A Texas Research International Company

Hydraulic Conductivity

Client:	Andrews Engineering, Inc.
Project:	Brickyard
Sample:	1006

Note: A B-value of 0.97 was achieved for the undisturbed specimen. Permeation measurements were made with a mercury Utube. The effective confining pressure was 5 psi per test request.
 TRI Log#:
 E2373-06-01

 Test Method:
 ASTM D 5084, Method F

 Test Date:
 11/09/12

INITIAL VALUES	
Avg. Sample Height (in)	2.49
Avg. Sample Diameter (in)	2.84
Wet Weight (g)	547.3
Area (in ²)	6.32
Volume (cc)	257.8
Initial Water Content (%)	15.4
Total Density (pcf)	132.5
Dry Density (pcf)	114.8
G _s (assumed)	2.65
Degree of Saturation (%)	92.9
Void Ratio	0.44
Porosity	0.31
1 Pore Volume (cc)	78.8

Hydraulic Conductivity

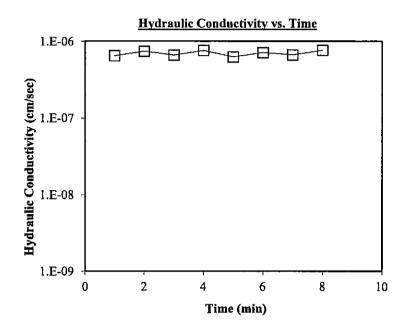
Time (min)	k at 20 deg C
	(cm/sec)
1	3.60E-07
2	3.00E-07
3	3.15E-07
4	3.32E-07
5	2.58E-07
6	2.69E-07
7	2.81E-07
8	2.94E-07
Average ¹ :	2.8E-07

1: Average corrected hydraulic conductivity (k_{20}) is obtained from the last 4 average readings.

John M. Allen, P.E., 11/12/2012

Analysis & Quality Review/Date Tested by: Tierra Jackson

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.



TRI/Environmental, Inc.

A Texas Research International Company

Hydraulic Conductivity

Client: Andrews Engineering, Inc. Project: Brickyard Sample: 1008

Note: A B-value of 0.95 was achieved for the undisturbed specimen. Permeation measurements were made with a mercury Utube. The effective confining pressure was 5 psi per test request.

TRI Log#:	E2373-06-01
Test Method:	ASTM D 5084, Method F
Test Date:	11/09/12

INITIAL VALUES	
Avg. Sample Height (in)	2.06
Avg. Sample Diameter (in)	2.86
Wet Weight (g)	437.5
Area (in ²)	6.41
Volume (cc)	216.1
Initial Water Content (%)	13.6
Total Density (pcf)	126.4
Dry Density (pcf)	111.3
G _s (assumed)	2.65
Degree of Saturation (%)	74.0
Void Ratio	0.49
Porosity	0.33
1 Pore Volume (cc)	70.7

Hydraulic Conductivity

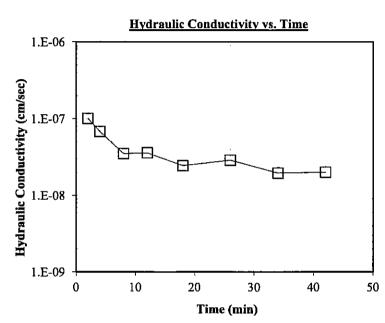
Time (min)	k at 20 deg C
	(cm/sec)
1	6.43E-07
2	7.36E-07
3	6.55E-07
4	7.52E-07
5	6.22E-07
6	7.08E-07
7	6.59E-07
8	7.58E-07
Average ¹ :	6.9E-07

1: Average corrected hydraulic conductivity (k_{20}) is obtained from the last 4 average readings.

John M. Allen, P.E., 11/12/2012

Analysis & Quality Review/Date Tested by: Tierra Jackson

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.



TRI/Environmental, Inc.

A Texas Research International Company

Hydraulic Conductivity

Client: Andrews Engineering, Inc. Project: Brickyard Sample: 1014

Note: A B-value of 0.95 was achieved for the undisturbed specimen. Permeation measurements were made with a mercury Utube. The effective confining pressure was 5 psi per test request.

TRI Log#: E2373-06-01 Test Method: ASTM D 5084, Method F Test Date: 11/09/12

INITIAL VALUES	
Avg. Sample Height (in)	2.44
Avg. Sample Diameter (in)	2.85
Wet Weight (g)	545.2
Area (in ²)	6.39
Volume (cc)	255.2
Initial Water Content (%)	11.4
Total Density (pcf)	133.3
Dry Density (pcf)	119.7
G _s (assumed)	2.65
Degree of Saturation (%)	79.2
Void Ratio	0.38
Porosity	0.28
1 Pore Volume (cc)	70.5

Hydraulic Conductivity

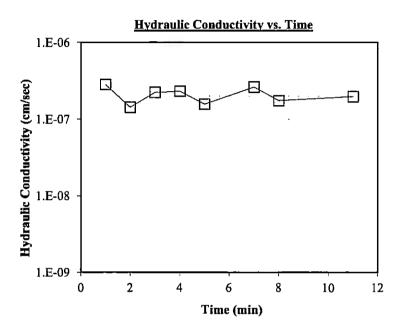
Time (min)	k at 20 deg C
	(cm/sec)
2	1.01E-07
4	6.84E-08
8	3.50E-08
12	3.59E-08
18	2.45E-08
26	2.88E-08
34	1.96E-08
42	2.01E-08
Average ¹ :	2.3E-08

1: Average corrected hydraulic conductivity (k_{20}) is obtained from the last 4 average readings.

John M. Allen, P.E., 11/12/2012

Analysis & Quality Review/Date Tested by: Tierra Jackson

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.



TRI/Environmental, Inc.

A Texas Research International Company

Hydraulic Conductivity

Client: Andrews Engineering, Inc. Project: Brickyard Sample: 1015

Note: A B-value of 0.97 was achieved for the undisturbed specimen. Permeation measurements were made with a mercury Utube. The effective confining pressure was 5 psi per test request.

TRI Log#: E2373-06-01 Test Method: ASTM D 5084, Method F Test Date: 11/09/12

INITIAL VALUES		
Avg. Sample Height (in)	2.50	
Avg. Sample Diameter (in)	2.85	
Wet Weight (g)	536.2	
Area (in ²)	6.36	
Volume (cc)	260.5	
Initial Water Content (%)	12.5	
Total Density (pcf)	128.5	
Dry Density (pcf)	114.2	
G _s (assumed)	2.65	
Degree of Saturation (%)	74.2	
Void Ratio	0.45	
Porosity	0.31	
1 Pore Volume (cc)	80.6	

Hydraulic Conductivity

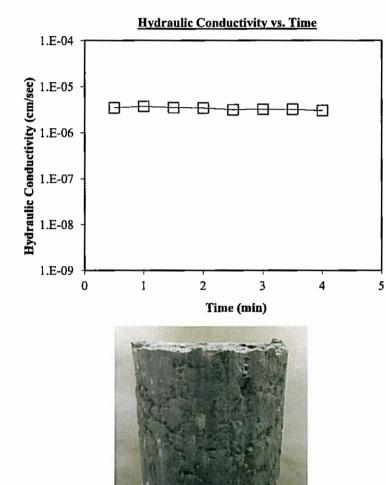
Time (min)	k at 20 deg C
	(cm/sec)
1	2.82E-07
2	1.42E-07
3	2.23E-07
4	2.31E-07
5	1.57E-07
7	2.62E-07
8	1.75E-07
11	1.97E-07
Average ¹ :	2.0E-07

1: Average corrected hydraulic conductivity (k_{20}) is obtained from the last 4 average readings.

John M. Allen, P.E., 11/12/2012 Analysis & Quality Review/Date

Tested by: Tierra Jackson

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.



TRI/ENVIRONMENTAL, INC.

A Texas Research International Company

Hydraulic Conductivity

Client:	Andrews Engineering, Inc.
Project:	Brickyard
Sample:	1020

Note: A B-value of 0.96 was achieved for the undisturbed specimen. Permeation measurements were made with a mercury Utube. The effective confining pressure was 5 psi per test request.
 TRI Log#:
 E2373-06-01

 Test Method:
 ASTM D 5084, Method F

 Test Date:
 11/13/12

INITIAL VALUES	
Avg. Sample Height (in)	2.93
Avg. Sample Diameter (in)	2.80
Wet Weight (g)	559.2
Area (in ²)	6.16
Volume (cc)	296.0
Initial Water Content (%)	8.3
Total Density (pcf)	117.9
Dry Density (pcf)	108.9
G _s (assumed)	2.65
Degree of Saturation (%)	42.4
Void Ratio	0.52
Porosity	0.34
1 Pore Volume (cc)	101.2

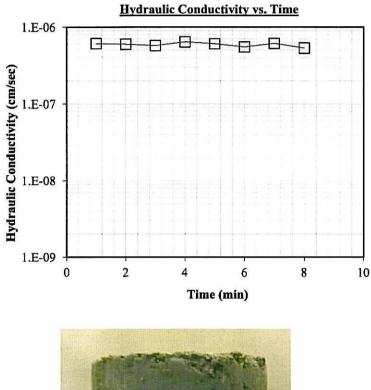
Hydraulic Conductivity

Time (min)	k at 20 deg C
	(cm/sec)
1	3.44E-06
1	3.70E-06
2	3.49E-06
2	3.43E-06
3	3.15E-06
3	3.23E-06
4	3.20E-06
4	3.01E-06
Average ¹ :	3.1E-06

1: Average corrected hydraulic conductivity (k_{20}) is obtained from the last 4 average readings.

John M. Allen, P.E., 11/14/2012 Analysis & Quality Review/Date Tested by: Tierra Jackson

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.



TRI/Environmental, Inc.

A Texas Research International Company

Hydraulic Conductivity

Client: Andrews Engineering, Inc. Project: Brickyard Sample: 1022

Note: A B-value of 0.97 was achieved for the undisturbed specimen. Permeation measurements were made with a mercury Utube. The effective confining pressure was 5 psi per test request.

TRI Log#: E2373-06-01 Test Method: ASTM D 5084, Method F Test Date: 11/09/12

INITIAL VALUES	
Avg. Sample Height (in)	2.23
Avg. Sample Diameter (in)	2.87
Wet Weight (g)	515.6
Area (in ²)	6.47
Volume (cc)	236.1
Initial Water Content (%)	10.3
Total Density (pcf)	136.3
Dry Density (pcf)	123.6
G _s (assumed)	2.65
Degree of Saturation (%)	80.8
Void Ratio	0.34
Porosity	0.25
1 Pore Volume (cc)	59.6

Hydraulic Conductivity

Time (min)	k at 20 deg C
	(cm/sec)
1	6.09E-07
2	5.97E-07
3	5.73E-07
4	6.40E-07
5	6.05E-07
6	5.50E-07
7	6.12E-07
8	5.31E-07
Average ¹ :	5.7E-07

1: Average corrected hydraulic conductivity (k_{20}) is obtained from the last 4 average readings.

John M. Allen, P.E., 11/12/2012 Analysis & Quality Review/Date

Tested by: Tierra Jackson

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.